## Transportation Engineering I EG 3104 CE

Year: III

Semester: I

Lecture: 3 Hrs./week
Tutorial: 1 Hr./week
Practical: Hrs./week

Lab: 2/2 Hrs./week

## **Course Description:**

This course is aimed to provide general background knowledge of highway engineering putting emphasis on alignment survey, geometric design, drainage, highway materials.

# **Course Objectives:**

After the completion of this course, students will be able to:

- 1. Describe highway alignments and conduct its engineering survey;
- 2. Understand the principles of geometric design, both vertical and horizontal together with drainage components of highway;
- 3. Differentiate between the various types of materials used in road construction and
- 4. Perform different test of road construction materials.

#### **Course Contents:**

# **Unit 1: Introduction to Transportation System:**

[6 Hrs.]

- 1.1. Introduction
- 1.2. Comparison of different modes of transportation system, suitability in Nepal
- 1.3. Road transport and its advantages/disadvantages
- 1.4. History of road development
  - 1.4.1 Roman roads construction technique
  - 1.4.2 Tresaguet road construction technique
  - 1.4.3 Telford road construction technique
  - 1.4.4 Macadam road construction technique
  - 1.4.5 Comparison between Telford and Macadam
  - 1.4.6 Modern road construction
- 1.5. Road construction in Nepal
- 1.6. Road classification as per Nepal Road Standard (functional classification only), National, Feeder, District, Urban and Village road.
- 1.7. Urban road patterns
  - 1.7.1 Grid iron pattern
  - 1.7.2 Radial pattern

#### **Unit 2: Highway Alignment and Engineering Survey:**

[4 Hrs.]

- 2.1. Introduction
- 2.2. Requirements of ideal highway alignment
- 2.3. Factors controlling highway alignment
- 2.4. Engineering survey for highway alignment
  - 2.4.1. Map study
  - 2.4.2. Reconnaissance.
  - 2.4.3. Preliminary survey
  - 2.4.4. Final location and detailed survey

## **Unit 3: Geometric Design of Highways:**

[20 Hrs.]

- 3.1. Introduction
- 3.2. Basic road terms
  - 3.2.1. Traffic volume (introduction only)
  - 3.2.2. Traffic capacity (introduction only)
  - 3.2.3. Skid/slip (introduction only)
- 3.3. Cross sectional elements
  - 3.3.1. Typical drawings of highway cross sections, rural roads/ urban roads
- 3.4. Camber
  - 3.4.1. Definition
  - 3.4.2. Objectives
  - 3.4.3. Types
  - 3.4.4. camber board preparation with numerical example
- 3.5. Highway curves
  - 3.5.1. Introduction, Types (Horizontal & Vertical)
  - 3.5.2. Necessity
  - 3.5.3. Design of horizontal curves (Effect of centrifugal force, transition curve with numerical examples)
- 3.6. Superelevation
  - 3.6.1. Definition
  - 3.6.2. Objectives
  - 3.6.3. Analysis of superelevation with numerical example of superelevation design in mixed traffic condition
  - 3.6.4. Methods of providing superelevation
- 3.7. Extrawidening
  - 3.7.1. Definition
  - 3.7.2. Objectives
  - 3.7.3. Analysis of mechanical widening with numerical example for calculating total widening
  - 3.7.4. Methods of providing extrawidening
- 3.8. Sight distance
  - 3.8.1. Definition
  - 3.8.2. Types
  - 3.8.3. Objectives
  - 3.8.4. Examples of situations restricting sight distance
  - 3.8.5. Numerical example of SSD & OSD
- 3.9. Gradient
  - 3.9.1. Definition
  - 3.9.2. Types (Rolling, Limiting, Exceptional, Minimum gradient)
  - 3.9.3. Factors governing the selection of grades, effect of high grades
  - 3.9.4. Grade compensation in horizontal curves (introduction only)
- 3.10. Vertical curves
  - 3.10.1. Definition
  - 3.10.2. Types (Summit & Valley)
  - 3.10.3. Design of summit curves (minimum length requirement based on stopping sight distance with numerical example)
  - 3.10.4. Design of valley curves (minimum length requirement based on both comfort and head light sight distance with numerical example)

## **Unit 4: Highway Drainage:**

[5 Hrs.]

- 4.1. Introduction and important of highway drainage
- 4.2. Causes of moisture variation in subgrade soil (By ground water & By free water concept only)
- 4.3. Requirements of good drainage system
- 4.4. Classification of highway drainage system
  - 4.4.1. Surface drainage (Types, longitudinal: lined and unlined, transverse, energy dissipating definitions), Drainage in rural highway, urban street, hill road concept, Design of surface drainage system (Numerical trapezoidal section)
  - 4.4.2. Subsurface drainage (Control of seepage flow, capillary rise, lowering of water table)
  - 4.4.3. Cross drainage (General, concept of causeways, inverted syphon, aqueduct, culverts: slab, box, arch & pipe)
  - 4.4.4. Energy dissipating structures: concept only.

## **Unit 5: Highway Materials:**

[10 Hrs.]

- 5.1. Classification of highway materials: Introduction, Classification based on purpose binding, mineral, other minerals.
- 5.2. Subgrade soil
  - 5.2.1. Uses
  - 5.2.2. Requirements of soil as a highway material
  - 5.2.3. California Bearing Ratio (CBR) test of soil (Test procedure)
- 5.3. Stone aggregates
  - 5.3.1. Definition
  - 5.3.2. Types: based on strength, grain size, shape, gradation basic concept only.
  - 5.3.3. Desirable properties of road aggregates
  - 5.3.4. Tests on road aggregates (Los Angeles Abrasion test, Aggregate Impact test, Water absorption test, Specific Gravity test, Shape test)
- 5.4. Binding materials (bituminous material):
  - 5.4.1. Introduction
  - 5.4.2. Types of binding materials (bitumen, tar), natural bitumen, petroleum bitumen, cutback bitumen, bituminous emulsion
- 5.5. Tests on bitumen: penetration test, ductility test, viscosity test, softening point test **Tutorials** [15 Hrs.]

Unit 3 Geometric Design of Highways [12 H]

Unit 4 Highway Drainage: [3H]

#### **Practical (laboratory)**

[15 Hrs.]

- 1. Perform California bearing test of soil
- 2. Perform Los Angeles Abrasion test of aggregate
- 3. Perform penetration test of bitumen
- 4. Perform softening point test of bitumen
- 5. Perform ductility test of bitumen

#### **References:**

1. Dinesh Kumar Shrestha, Anil Marsani, Transportation Engineering volume 1, Jasni Publications, Mid Baneshwor, Kathmandu, Nepal.

- 2. Partha Mani Parajuli, Course Manual on Transportation Engineering I. IoE, Pulchowk, Lalitpur, Nepal.
- 3. C E G Justo, S K Khanna, Highway Engineering, Khanna Publications, New Delhi, India
- 4. Ajay K Duggal, Vijaya P. Puri, Laboratory manual on Highway Engineering, New Age International (P) Limited, New Delhi, India.
- 5. S. K. Sharma, Principles, Practice and Design of Highway Engineering, S Chand and Company Ltd. New Delhi.

#### **Evaluation Scheme**

The questions will cover all the chapters in the syllabus. The evaluation scheme will be as indicated in the table below:

| Unit | Title                                    | Hrs. (L+T) | Marks<br>distribution |
|------|------------------------------------------|------------|-----------------------|
| 1    | Introduction to Transportation System    | 6          | 12                    |
| 2    | Highway Alignment and Engineering Survey | 4          | 16                    |
| 3    | Geometric Design of Highways             | 20+12      | 36                    |
| 4    | Highway Drainage                         | 5+3        | 16                    |
| 5    | Highway Materials                        | 10         | 16                    |
|      | Total                                    | 60         | 96                    |

#### Note:

Attempt any five questions out of six. All questions have (a) and (b) sub- questions.